Incremental Parsing with the Perceptron Algorithm

نویسندگان

  • Michael Collins
  • Brian Roark
چکیده

This paper describes an incremental parsing approach where parameters are estimated using a variant of the perceptron algorithm. A beam-search algorithm is used during both training and decoding phases of the method. The perceptron approach was implemented with the same feature set as that of an existing generative model (Roark, 2001a), and experimental results show that it gives competitive performance to the generative model on parsing the Penn treebank. We demonstrate that training a perceptron model to combine with the generative model during search provides a 2.1 percent F-measure improvement over the generative model alone, to 88.8 percent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Ltag Parsing

STATISTICAL LTAG PARSING Libin Shen Aravind K. Joshi In this work, we apply statistical learning algorithms to Lexicalized Tree Adjoining Grammar (LTAG) parsing, as an effort toward statistical analysis over deep structures. LTAG parsing is a well known hard problem. Statistical methods successfully applied to LTAG parsing could also be used in many other structure prediction problems in NLP. F...

متن کامل

Structured Perceptron with Inexact Search

Most existing theory of structured prediction assumes exact inference, which is often intractable in many practical problems. This leads to the routine use of approximate inference such as beam search but there is not much theory behind it. Based on the structured perceptron, we propose a general framework of “violation-fixing” perceptrons for inexact search with a theoretical guarantee for con...

متن کامل

Multilingual Dependency Parsing and Domain Adaptation using DeSR

We describe our experiments using the DeSR parser in the multilingual and domain adaptation tracks of the CoNLL 2007 shared task. DeSR implements an incremental deterministic Shift/Reduce parsing algorithm, using specific rules to handle non-projective dependencies. For the multilingual track we adopted a second order averaged perceptron and performed feature selection to tune a feature model f...

متن کامل

Efficient Top-Down BTG Parsing for Machine Translation Preordering

We present an efficient incremental topdown parsing method for preordering based on Bracketing Transduction Grammar (BTG). The BTG-based preordering framework (Neubig et al., 2012) can be applied to any language using only parallel text, but has the problem of computational efficiency. Our top-down parsing algorithm allows us to use the early update technique easily for the latent variable stru...

متن کامل

Lock-Free Parallel Perceptron for Graph-based Dependency Parsing

Dependency parsing is an important NLP task. A popular approach for dependency parsing is structured perceptron. Still, graph-based dependency parsing has the time complexity of O(n 3), and it suffers from slow training. To deal with this problem, we propose a parallel algorithm called parallel perceptron. The parallel algorithm can make full use of a multi-core computer which saves a lot of tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004